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Abstract

In this study, we investigate the link between default loans and macroeconomic and bank-specific variables to assess 
exposure of Islamic banks to credit risks, and then design stress testing scenarios to assess the banking system’s resil-
ience to adverse shocks. The results suggest that credit risk exposure of Islamic banks in Sudan is mainly affected by 
bank-specific variables, which include changes in total assets, total deposits, and total loans; all of them have a negative 
and significant impact on the probability of default loans. The study also indicates that the macroeconomic variables, 
which include growth of domestic product, change in exchange rate premium, and change in money supply, have posi-
tive but insignificant effects on the risk of default loans. The study concludes by pointing out that the Islamic banking 
system in Sudan is more vulnerable to bank-specific risk exposure rather than macroeconomic indicators.
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1. INTRODUCTION

Stress tests are a very important tool for assessing the ability of financial institutions to counterbalance the 
influence of large shocks on their capital. As a result of the world’s biggest financial crisis since the Great 
Depression, there is an increasing interest in stress-testing financial intermediaries to assess their capital 
needs in the event of large but plausible shocks (Shijaku and Ceca, 2011). However, central banks have a  
significant task, either by setting basic standards and directing stress tests at the micro level or designing 
them to assess the financial stability associations of macroeconomic developments and systematic risk. 
Stress tests are a useful aid in evaluating the stability of banking systems. They allow a forward-looking 
analysis and help to adopt a consistent approach in detecting the possible risks, which might face the 
banking system as a whole (Neelakantaiah, 2016). They can capture the impact of exceptional but plausible 
events on such portfolios; moreover, they could test if the capital cushion is appropriate under stress situa-
tions, and also present advance-looking hints in the capital assessment process.

Among the various risks the banking sector faces, the credit risk is the most important source of insol-
vency problems for banks (Buncic and Melecky, 2013; Papadopoulos and Sager, 2016). Credit risk is the 
potential for losses from borrower defaults or nonperformance on a contract. Stress tests can be used to 
assess the various risks the banking sector could face including the credit risk. Credit risk management is 
practically used by banks to mitigate losses by understanding the adequacy of the bank’s capital and loan 
loss reserve at any given time. 

The worldwide financial crises put credit risk management into the supervisory spotlight, which 
demands more transparency. The new Basel III regulations create a bigger regulatory burden for banks. 
Without a careful risk assessment, banks have no way of knowing whether their capital reserves exactly 
reflect risks or whether loan loss reserves sufficiently conceal potential short-term credit losses.
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The current study focuses on how to develop a framework that stress tests the exposure of credit risk 
in the banking system, to assess the vulnerability of the banking sector toward exceptional but plausible 
shocks, and how to ensure that the bank’s risk-weighted credit exposures are resilient to adverse financial 
shocks. The study focuses on the following issues: 

I. Assessing exposure of the full-fledged Islamic banking system to credit risk.
II. Assessing the financial system’s resilience to adverse financial shocks.

The importance of credit risk stress tests is to offer information about the performance of the bank-
ing system under any exceptional but plausible shocks. This could help policymakers evaluate the banking 
system’s vulnerabilities to these shocks. Moreover, in most banking systems, credit risk is the key risk that 
existing models are most in need of strengthening (Čihák, 2007).

The main objective of the study is to develop a framework that stress tests the exposure of credit risk in 
the Islamic banks in Sudan. This is done by developing a model that describes the links between the default 
loans and macroeconomic and bank-specific variables, and then designing a stress-testing scenario and 
assessing the financial system’s resilience to adverse shocks. 

2. LITERATURE REVIEW

Revolutionary work in the area of modeling credit risk is the effort by Altman (1968). He uses the dis-
criminant analysis technique to model credit risk. A large set of studies find that credit risk is, in gen-
eral, driven by idiosyncratic and systemic factors (Bangia et al., 2002; Bonfim, 2009; and Jiménez and 
Saurina, 2004). The macroeconomic effects are very important in assessing the default probabilities. 
Instead, there is also a strong reverse effect of credit risk on macroeconomic activity. Gilchrist and 
Zakrajšek (2012) realize that the movement of economic activity could be explained significantly using 
the level of credit risk.

According to Čihák (2007), there are three basic groups of approaches to modeling credit risk as part 
of stress tests. First, there are mechanical approaches (typically used when there are insufficient data or if 
shocks are different from past ones). Second, there are approaches based on loan performance data (e.g., 
probabilities of default, losses given default, nonperforming loans [NPLs], and provisions) and regressions 
(e.g., a single equation, structural, and vector auto regression). Third, there are many approaches built on 
data from the corporate sector (e.g., leverage or interest coverage) and probably on data from the house-
hold sector.

Moreover, Foglia (2009) has identified two approaches for credit risk modeling. These are listed out 
below: 

1. Models based on loan performance in which the key dependent variables are the NPL ratio, the loan loss 
provision (LLP) ratio, and historical default frequencies.

2. Models based on individual borrowers’ data, where in this approach the credit risk satellite model on 
individual borrowers’ data is estimated. However, the model specification may also include macrofi-
nancial data as explanatory variables. In case no macroeconomic variables are incorporated, to link the 
macrofinancial variables to borrower-specific data, an additional satellite model may be used.

Čihák (2007) summarizes a wide range of contributions, which tried to link credit risk to macroeco-
nomic variables using econometric models. For example, Pesola (2005) presents an econometric study 
of macroeconomic determinants of credit risk and other sources of banking fragility and distress in the 
Nordic countries, Belgium, Germany, Greece, Spain, and the United Kingdom from the early 1980s to 
2002. An even broader cross-country analysis is presented in IMF (2003). For the Australian banking sec-
tor, Boss et al. (2006) provide estimates of the relationship between macroeconomic variables and credit 
risk. 

Melecky and Podpiera (2010) add to Foglia’s (2009) summary of the credit risk stress-testing practices 
developed in selected central banks, which include the structural econometric model; vector autoregressive 
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model; and the statistical approach, a judgmental approach that is used in cases when statistical or econo-
metric models are not capable of producing appropriate stress scenarios. Their approach is often employed 
by developing countries’ central banks consequent to the lack of historical data for estimation of macro-
economic models. However, the model specification may also include macrofinancial data as explanatory 
variables.

3. DATA AND SAMPLE SIZE

Default rates in term of NPL are drawn from a group of 33 Islamic banks operating in the country. The data 
covers the period from 2011 to 2015 on an annual basis. The study uses data of the macroeconomic indica-
tors, which are growth of domestic product (GDP), exchange rate premium (EXR), and change in the money 
supply (ΔM2), as well as financial and bank-specific variables, which are total assets (TAs), total deposits 
(TDs), and total loans (TLs) over the same period. 

4. METHOD(S)

The analyses in the paper use panel data regression to assess the probability and exposure to default risk of 
the Islamic banking system in Sudan. The study employs binary choice models of probit and logit regression.

4.1. Panel Data Analyses
Panel data refer to datasets consisting of cross-sectional observations over time, or pooled cross-section 
and time series data. They have two dimensions, one for time and one for the cross-section entity. For the 
time dimension, a subscript t is used to stand for the time dimension, with t 5 1, 2, ..., T for T observations 
at the T timepoints. For the cross-sectional data, the entity can be individuals, firms, regions, or countries. 
The subscript n to the variable is usually adopted to represent the cross-section dimension, with n 5 1, 2, ..., 
N for N observations for N different entities. Statistically, a panel data can provide more observations to 
enjoy the large sample status, so the central limit theorem may apply where its respective single dimen-
sional time series or cross-sectional dataset fails, making estimation and inference more efficient (Wang, 
2009). Panel data regression is useful for assessing the relationship between the default rates (NPLs) of a 
group of entities (banks) during a certain time horizon and a group of macroeconomic, bank-specific, and 
financial variables.

4.2. Fixed Effects versus Random Effects
Pooled time series and cross-sections with both the time dimension and cross-section dimension can be 
expressed as follows:

β ω= + = =,... ; 1,... ,y X i i N t Tit it it  (1)
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For any individual entity, yi is a (T  1) vector for T observations of the dependent variable, Xi is a (T  K)  
matrix of independent variables or regressors, with K being the number of independent variables, and b is 
a (K  1) vector of coefficients. Finally, a compact matrix representation for the panel is given as: 
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Various effects associated with the intercept can be formulated by decomposing wit in different ways. For 
individual effects, the fixed effects model assumes that

ω ε= + ,cit i it  (4)

where ci is individual-specific and time-invariant unobserved heterogeneity and is a constant for entity i,  
cov (ci, Xit)  0, Cov (eit, Xit) 50, Var (eit) 5sε

2; and eit is pure residuals uncorrelated with each other and uncor-
related with independent variables. A compact matrix representation for the panel data model with fixed 
effects is given as:
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Fixed effects models cannot be readily estimated by the Ordinary Least Square (OLS). There are few 
approaches that augment the OLS, such as resorting to dummies, applying first differencing over time, and 
performing the within transformation.

The random effect model with individual effects assumes that

ω μ εit i it ,= +  (6)
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where μi is a random variable, E(μi) 5 0, Var(μi) 5 σμ
2 μ, Cov(i, Xit) 5 0, Cov(μi, eit) 5 0, E(eit) 5 0, 

Var(eit) 5 σ2
e; and eit are pure residuals uncorrelated with each other and uncorrelated with independent 

variables. A compact matrix representation for the panel data model with random individual effects is

y5 Xβ 1 μ 1 ε, (7)
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4.3. Stationarity Test and Panel Unit Root Test
Panel unit root tests provide an overall aggregate statistic to examine whether there exists a unit root in 
the pooled cross-section time series data and judge the time series property of the data accordingly. It is 
claimed that the panel framework provides remarkable improvement in statistical power compared to per-
forming a separate unit root for each individual time series (Wang, 2009).

4.4. The Logit Model
In a binary choice model, the dependent variable takes the value of either 1 or 0, with a probability that is 
a function of one or more independent variables. The logit model is commonly used to formulate binary 
choice, response, or categorization. The logit model derives its name from the logistic function. Regression 
for estimating the logit model is referred to as logistic regression.

The logit model is based on the odds of an event taking place. The logit of a number P between 0 and 
1 is defined as: 

P
P

P
Logit ( ) Ln

1
.=

−  (8)

If P 5 P (Y 5 1|Xβ) is the probability of an event taking place, then P/(1P) is the corresponding odds and 
Ln[P/(1P)] is the corresponding log odds. The logit model states that the log odds of an event taking place 
are a linear function of a given set of explanatory variables, i.e.:

β
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The probability P 5 P (Y 5 1|Xβ) can be solved as:

β
β

β
= =

+
( 1| )

exp( )
1 exp( )

.P Y X
X

X  (10)

Estimation of the logit models is usually through maximizing their likelihood function. Recall that the likeli-
hood of a sample of N independent observations with probabilities P1, P2,..., PN, L, is
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For the logit model, the probability of Y being 1 is
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And the log-likelihood function of the logit model, LL(b), is
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Coefficient estimates can be derived, adopting procedures that maximize the earlier-mentioned log-likelihood 
functions.

5. RESULTS AND DISCUSSION

The study investigates the impact of key macroeconomic and financial indicators on the default rates of a 
sample of 33 Islamic banks in Sudan in the period 2011–2015. 

To assess bank’s probability of defaulting loans, the authors used probit and logit models. To convert 
the data into binary variables, they ranked (from highest to lowest) the ratio of NPL to TLs. Any bank with 
NPL/TL greater than the NPL/TL benchmark has been labeled as high-exposure risk. Benchmarks are identi-
fied using the average for all the banks on the sample. Any bank of high exposure is assigned the number 1, 
and otherwise is assigned the 0 value.

The recoverable loans (RLs; total loans  none performing loans) are expressed as X1, the TAs are 
expressed as X2, while X3 stands for the TDs. The binary model of logit helps in assessing the likelihood of 
banks’ exposure to credit risk and measures the impact of explanatory variables on the bank’s risk exposure. 

Then, the scenario analyses are applied by this study to assess the banks’ resilience to the financial 
shocks or plausible events. Baseline scenarios have been developed for this purpose.

5.1. Panel Regression Analysis
To check stationarity of variables, the authors employed panel unit root tests for the dependent variable 
(NPL), and the independent variables (TD, TL, TA, GDP, EXR, and ΔM2). Panel unit root tests results (not 
reported in the paper) cannot reject the null hypothesis of unit root at the level, but they reject the null 
hypothesis at the first difference of the variables. Hausman’s test results show that the random effect model 
is the best fit model for the data, as indicated in Table 1. It accepts the null hypothesis that the random effect 
model is appropriate, and rejects the alternative hypothesis of the fixed effect model. The panel regression 
results from the random effect model are summarized in the Table 2. The results show the NPL is positively 
associated with GDP growth rate, EXR, change in TLs, and change in TAs. However, it is negatively associ-
ated with change in TDs and the change in the supply of money (ΔM2). All banks’ specific variables dis-
play significant relationship with the dependent variable. In contrast, the macroeconomic variables display 
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insignificant relationship with the dependent variable. As a result, a 1% change in the TD variable affects 
negatively the NPLs by 12%. Whereas, the 1% change in TA and TLs affect the NPLs by 3% and 14%, respec-
tively. Macroeconomic variables (GDP, EXR, and ΔM2) display an insignificant relationship with the depen-
dent variables, which implies that only the bank-specific variables (TAs, TDs, and TLs) have a significant and 
important effect on the dependent variable NPL ratio.

5.2. Logit Regression Results
In the second stage of the analyses, the study uses the Logit regression model to assess the credit risk of 
default as well as the credit risk exposure. The study sets the probability of a default indicator NPL ratio 
(NPL/TL) as the dependent variable. The NPL ratio has been set as 1 or 0, by taking the average of the NPL 
ratio for all banks in each year and determining the average as a benchmark. Each bank with a value greater 
than the benchmark is scored 1; otherwise, it is 0. The bank’s specific variables like RLs, TAs, and TDs are 
defined as independent variables. The RLs have been taken as a proxy for managerial efficiency, i.e., the 
higher level of RLs, the better the managerial performance. The TAs and TDs represent bank size indicators; 
they reveal the effect of bank size on credit default or credit risk exposure. 

Results in Table 3, indicate that the RL’s variable (X1) shows a negative relationship with banks’ default rates, 
whereas the TA’s variable (X2 is positively associated with the NPL ratio, implying that larger banks are more 
vulnerable to default risk. The deposits variable (X3) shows a negative association with increase in default loans, 
indicating that banks with larger deposits have lower default risk, implying that Islamic banks in Sudan have 
lesser problems in managing their liabilities, as there are no interest obligations payable to deposit owners.

Table 1. Random Effects–Hausman Test.

Test Summary 
Chi-Square 

Statistic Chi-Square d.f. Probability 

Cross-section random 0.000000 6 1.0000 

Table 2. Random Effect Regression Model.

Variable Coefficient t-Statistic Probability

GDP 1168161. 0.171099 0.8644

EXR 24188902 0.215842 0.8294

ΔM2 281.9161 0.311091 0.7561

TA 0.030991 4.893143 0.0000

TD 0.124662 15.16774 0.0000

TL 0.147784 10.52069 0.0000

C 23912438 0.176619 0.8600

Weighted statistics

F-statistic 148.2436 

Prob(F-statistic) 0.000000

Durbin–Watson statistic 1.596796

Note: EXR is the exchange rate premium, ΔM2 is the change in the money 
supply, TAs represent the total assets, TDs represent the total deposits, 
and TLs represent the total loans.
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6. CONCLUSION

In this paper, the authors employed panel data regression to assess the determinants of credit risk in the 
Islamic banking system, and then we set up the stress testing model to assess the exposure of these banks to 
credit risk pressure. The findings in the paper show credit risk as measured by NPLs is positively associated 
with GDP growth rate, EXR, change in TLs), and change in TAs. It is negatively associated with change in depos-
its (TDs) and the change in the supply of money (ΔM2). All banks’ specific variables display significant relation-
ship with the dependent variable, which is the credit risk. In contrast, the macroeconomic variables display 
insignificant relationship with the dependent variable. The stress test results indicate larger banks in terms of 
assets face higher probabilities of credit defaults, and banks with higher deposits face lower probabilities of 
credit defaulting. The negative association between deposits and credit risk (default risk) reveals that Islamic 
banks have less problems in managing their liabilities as there is no interest payable to deposit owners.
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